位置:成果数据库 > 期刊 > 期刊详情页
基于资源整合的节能虚拟网络重配置算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.0[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:山东师范大学信息科学与工程学院,济南250000
  • 相关基金:国家自然科学基金资助项目(61373149)~~
中文摘要:

针对虚拟网络映射中能耗过高、接收率偏低和负载不够均衡等问题,提出一种基于虚拟资源整合的综合性重配置算法——HEAR算法。该重配置算法分为两个阶段:节点重配置阶段优先将映射虚拟节点最少的物理节点上的虚拟节点及其相连虚拟链路迁移,挂起或关闭空负载的物理节点来达到节能的目的;此外对这些迁移节点的目标物理节点进行筛选,避免选择过度拥塞的物理节点达到提高接收率和均衡负载的目的。链路重配置阶段采用能耗感知的方法选择可用于迁移的物理链路集合,再用Dijkstra算法选择最短物理路径并将相关路径迁移过去。实验结果表明,HEAR算法比启发式重配置算法平均能耗下降约20%,接收率提高约10%。

英文摘要:

Concerning the high energy consumption, low acceptance rate and unbalanced load in virtual network embedding,a comprehensive energy-aware virtual network reconfiguration algorithm based on resource consolidation,namely HEAR algorithm,was proposed,which consists of two stages including node reconfiguration and link reconfiguration. In node reconfiguration stage,the virtual nodes on the physical node with least mapping virtual nodes and their relevant virtual links were moved to other physical nodes except congested nodes to improve acceptance rate and load balance,as well as suspending or closing the physical nodes with empty load to save energy. In link reconfiguration stage,the energy-aware method was adopted to select substrate link candidate set for migration,and Dijkstra algorithm was used to select the shortest available physical path to redeploy the virtual links on it. The simulation results show that,compared with energy-aware relocation heuristic algorithm,HEAR algorithm can reduce energy consumption by about 20%,and increase acceptance rate by about10%,which means it can save energy consumption,improve the acceptance rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679