位置:成果数据库 > 期刊 > 期刊详情页
一种基于SVM和领域综合特征的Email自动分类方法
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP393.098[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学计算机科学技术系,合肥230027
  • 相关基金:本文得到国家自然科学基金项目资助(No.70171052,No.90104030).
中文摘要:

Email自动分类已成为半结构化文本信息自动处理的研究热点。本文在时已有Email自动分类方法深入研究的基础上,提出了一种基于SVM和领域综合特征的Email自动分类方法。主要包括:一是将SVM引入到Email自动分类研究中,并对SVM学习算法中的核函数和参数选择进行了探讨;二是鉴于词频的特征表示方法难以准确表示Email主要内容,因此将领域知识引入Email特征表示中,并在此基础上提出了一种综合领域知识和词频的特征表示方法,用于Email分类。该方法是在词频特征的基础上加入人工总结出的领域特征,从而更能准确地表示Email的主要内容,以提高Email分类的平均F-score。通过实验,验证了基于SVM和领域综合特征的Email自动分类方法能有效地提高Email自动分类处理的准确性。

英文摘要:

The process of analyzing and organizing Emall messages is a challenging application of Web and Text mining techniques. A novel automatic Email classification method based on support vector machines and knowlcdge-based hybrid features is put forward on the basis of the research of existing email classification methods in this paper. We firstly apply SVM learning algorithms to Email classification, also investigate the effects of various kernel function and feature selection. Whereas Email feature representation based on word frequency cannot represent the topic of an Email precisely, this paper presents a hybrid feature representation method for Email classification. It adds knowledge based features in bag-of-word features to improve F score in Email classification. Experimental results show that this method can effectively improve Email classification accurateness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227