位置:成果数据库 > 期刊 > 期刊详情页
ARM GPU的多任务调度设计与实现
  • ISSN号:0253-987X
  • 期刊名称:《西安交通大学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学电子与信息工程学院,西安710049
  • 相关基金:国家高技术研究发展计划(863)(No.2012AA010904); 国家自然科学基金(No.61375023)
中文摘要:

针对图像GIST全局特征提取算法的计算任务,实现了CPU+GPU异构协同计算与优化:使用CPU完成图像量化、线性延拓等小计算量、不规则的数据运算,使用GPU完成滤波、Gabor特征提取、降维等计算密集、高度并行的数据运算。面向图像序列的计算扩展,在CPU端引入线程池技术,通过每个线程都绑定一个CUDA流处理一幅图像的方法,实现了多幅图像并发流处理和流内数据传输延时的隐藏;利用线程池技术提供线程预创建、资源预分配及根据资源消耗情况的线程数量动态增减等方法,提高了CPU对GPU计算资源的调度使用效率。实验结果表明,在保证同等精度的前提下,基于异构计算平台的图像GIST特征提取方法相比传统CPU平台达到8.35-9.31倍的加速比,在使用线程池之后算法处理图像序列数据时速度进一步提升10.0%-37.2%。

英文摘要:

To extract the global feature of GIST, a heterogeneous CPU+GPU collaborative computing and optimization is firstly implemented: CPU is used to complete the tasks of small amount of calculations and irregular data operations, such as image quantization and linear extension, while using GPU to complete the tasks with compute-intensive and highly parallel data operations, such as filtering, Gabor feature extracting and dimension reducing. For processing image sequences,the thread pool technology is introduced on the CPU side. Through the use of each thread binding a CUDA stream for one image, the parallel stream computing for multiple images between CPU and GPU and the streaming data transmission delay hidden are achieved. Moreover thread pool technology also offers the methods of thread pre-creating, pre-allocating of resources and running thread number changing on resource, which can improve the computing efficiency of GPU scheduled by the CPU. Under the same computing accuracy, experiments show that GIST implementation on heterogeneous computing platforms for images reaches 8.35-9.31 times speedup of the running on traditional CPU platform, and has an upgrading rate of 10.0%-37.2% for image sequences data while using the thread pool.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275