位置:成果数据库 > 期刊 > 期刊详情页
基于 SVM 方法的高山松林蓄积量遥感估测研究
  • ISSN号:1672-8246
  • 期刊名称:《西部林业科学》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] S758[农业科学—森林经理学;农业科学—林学]
  • 作者机构:[1]西南林业大学,云南昆明650224
  • 相关基金:国家林业局林业公益性科研专项(201404309),国家自然科学基金(31060114).
中文摘要:

以香格里拉县高山松为研究对象,利用2006年香格里拉县TM遥感影像、2006年森林资源二类调查小班数据、2009年精度为30 m 的DEM数据以及2013年香格里拉县高山松实测样地数据,提取研究区内高山松林影像分布图及筛选出17个因子(13个遥感因子、3个地形因子、1个地面调查因子)作为备选自变量,在MAT-LAB下利用LIBSVM模块建立研究区高山松林蓄积量单位面积(30 m ×30 m)估测模型。结果表明,选用RBF核函数在参数范围内寻找出SVM模型的最佳参数C=3.5809, g=0.1、 p=0.01,利用最佳寻优参数建立SVM非参数模型,对SVM模型进行测试得到,均方根误差MSE=0.0087,复相关系数R=0.51,相对误差RE=23.4%,估测精度为76.6%。以像元为单位,分块提取高山松林对应的各像元自变量因子,利用估测模型预测得到香格里拉县高山松林总蓄积量为13318476.5 m3。

英文摘要:

By taking the Pinus densata in Shangri-La County as the research target , TM remote sensing image of Shangri-La County in 2006 , the forest resources inventory data in 2006 , the DEM data of 30 meters precision in 2009 , and the Pinus densata ’ s ground sample data of Shangri-La County in 2013 was adopted as the data source.The Pinus densata’s distribution image in the study area was extracted , and 17 factors (13 remote sensing factors, 3 terrain factors, 1 ground survey factors ) was selected as the alternative variables.By using LIBSVM module in MATLAB, the estimation model of Pinus densata’ s per unit (30 m ×30 m ) stock volume of study area was estab-lished.The results showed that the best optimal parameters were C =3.580 9, g=0.1, p=0.01 by using the RBF kernel function in the range of constant , MSE=0.008 7, R=0.51, RE=23.4%, in SVM model test with esti-mation accuracy of 76.6 %, and the predicted total volume of Pinus densata was 13 318 476.5 m3 in Shangri-La county by taking the pixel as unit and extracting the independent variable factors.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西部林业科学》
  • 北大核心期刊(2011版)
  • 主管单位:云南省林业厅
  • 主办单位:云南省林业科学院 云南省林学会
  • 主编:王卫斌
  • 地址:昆明市黑龙潭云南省林业科学院内
  • 邮编:650201
  • 邮箱:jwcfs@vip.163.com
  • 电话:0871-65151502
  • 国际标准刊号:ISSN:1672-8246
  • 国内统一刊号:ISSN:53-1194/S
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊奖,云南省优秀期刊奖,改革创新奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,中国中国科技核心期刊,中国北大核心期刊(2011版)
  • 被引量:4931