位置:成果数据库 > 期刊 > 期刊详情页
基于多重特征选择和多分类器融合的文本层次分类研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京科技大学信息工程学院,北京100083, [2]北京图形研究所,北京100029, [3]哈尔滨工业大学教育部-微软语言语音重点实验室,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60736044)
中文摘要:

针对大量电子文档需要准确地进行多层次自动分类管理的现实需求,提出基于多重特征选择和多分类器融合技术的层次分类方法。通过引入可信度函数对单分类器效果进行评价,适时采用辅助分类器对较难分类的文档进行分类投票判决。实验结果表明,相对于单分类器,该方法无论在平面分类和层次分类语料上都获得了更好的分类精度,且具有较好的时间复杂性,有很好的实际应用前景。

英文摘要:

In practice, many documents need to be accurately classified into multiple hierarchies. This paper intended to introduce a method of hierarchical classify, which was based on multiple feature selection and multiple classifiers. It was to evaluate the experimental result of single classifier using the reliability function, to classify the documents that were hard to be classified by voting. Auxiliary classifier should be used if required. The experiments show that the method used has better accuracy and cost less time on both flat classification and hierarchical classification corpuses. It has a good vision of applications.

同期刊论文项目
期刊论文 117 会议论文 76 专利 12 著作 3
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049