位置:成果数据库 > 期刊 > 期刊详情页
Modified Morley Element Method for a Fourth Order Elliptic Singular Perturbation Problem
  • 时间:0
  • 分类:O18[理学—数学;理学—基础数学]
  • 作者机构:[1]LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
  • 相关基金:Acknowledgment. This work was supported by the National Natural Science Foundation of China (10571006).
  • 相关项目:材料科学中若干偏微分方程问题的数值方法
中文摘要:

在这篇论文,我们认为非一致是第四份订单的有限元素近似在二种尺寸的椭圆形的不安问题。我们在场在某些条件下面的一个后验错误评估者,并且基于错误评价给 h 版本适应算法。评估者的本地行为也被分析。这个评估者为几个非一致的方法工作,例如修改莫利方法和修改 Zienkiewicz 方法,并且在一些假设下面,它是最佳的。数字例子被报导,与象一个模型问题的一个线性静止 Cahn-Hilliard-type 方程。

英文摘要:

In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-HiUiard-type equation as a model problem.

同期刊论文项目
同项目期刊论文