为减小可再生能源输出功率波动对孤立微网电能质量的影响,本文设计了一种基于模糊控制与非线性优化的能量管理策略并应用于风/光/储/柴构建的微网系统中。以能量平衡、瞬时功率控制、锂离子电池及超级电容混合储能综合协调控制为目标,开展仿真研究,并在已有的150kW风/光/储/柴微网实验平台上进行了验证。研究表明,在非线性优化的作用下,系统动态响应快、瞬时功率缓冲控制效果好,该策略具有实用价值。
To reduce the output power fluctuation of renewable energy and the establishment cost of the isolated micro-grids, this paper presents an energy management strategy based on fuzzy control and nonlinear optimization. The strategy was applied to a micro-grid system which consists of wind, light and diesel engine storage. We carded out some simulations with aims of power balance, coercion of the instantaneous power, lithium-ion battery and super capacitor storage as the optimization condition. The results were verified on the experimental platform. A numerical example showed that, nonlinear optimization could accelerate the dynamic response of the system and buffer the instantaneous power. These results reveal that such strategy might have practical values.