在这篇论文,我们学习停止的集合,停止距离;为二进制线性码的停止的冗余性。停止冗余性是 Schwartz 建议的一个新概念;Vardy 最近为在在一条二进制檫除隧道(BEC ) 上的反复的译码下面评估线性码的表演。自从停止冗余性的准确价值,是困难的一般来说获得,好更低;上面的界限是重要的。我们在改进 Schwartz 的相应结果的二进制线性码的停止的冗余性上获得新一般上面的界限;Vardy。
In this paper, we study the stopping sets, stopping distance and stopping redundancy for binary linear codes. Stopping redundancy is a new concept proposed by Schwartz and Vardy recently for evaluating the performance of a linear code under iterative decoding over a binary erasure channel (BEC). Since the exact value of stopping redundancy is difficult to obtain in general, good lower and upper bounds are important. We obtain a new general upper bound on the stopping redundancy of binary linear codes which improves the corresponding results of Schwartz and Vardy.