纳米受限流体因其异于宏观流体的特殊性,在膜分离、介孔催化等领域均具有广阔的应用前景。壁面附近流体的分层有序结构及其对流体动力学特性的影响,是纳米受限流体区别于宏观流体的关键所在。从纳米受限流体的分子堆积结构及双电层结构出发,总结了模拟计算及实验研究中发现的规律,对纳米受限流体自扩散性质、壁面滑移现象等方面的进展进行了综述,探讨了宏观连续介质模型在纳米受限流体中的适用性,并就纳米受限流体动力学的发展进行了展望。
The fluids under nano-confinement show broad application prospect in membrane separation, mesoporous catalyst, etc., benefiting from the specific phenomena occurring at this small scale compared with that at macro scales. The layered and ordered structure of the fluids near the wall and its effect on the hydrodynamic characteristics of the fluids are the main differences from those at macro scales. The common rule of the molecules aggregation structure and the electric double-layer structure of fluids under nano-confinement, and their effects on the self-diffusion property and wall slip phenomenon are reviewed. The applicability of the macroscopic continuum theory in fluids under nano-confinement is discussed. Finally, future development of fluids hydrodynamics under nano-confinement is envisaged.