针对模糊C-均值聚类算法的单一隶属度不能充分描述图像不确定性,且聚类过程中忽略像素空间关系的问题,提出一种基于空间信息的直觉模糊C-均值算法;该算法选取3×3的模板计算邻域像素灰度均值;并引入权重项,来控制灰度信息和空间信息各自所占的比重,同时用犹豫度更新直觉模糊集的隶属度函数;对常用标准图像的仿真结果表明,该算法能更好地保留图像细节信息,得到更加理想的图像分割效果。
In view of the Fuzzy C-Means clustering algorithm's single membership degree can't fully describe the images uncertainty,and ignore the pixel spatial relations in the process of clustering,here put forward a kind of image segmentation algorithm based on spatial information and intuitionistic fuzzy sets.The algorithm select the template of 3×3computing neighborhood pixels within the grayscale average;and introduce the weight to control the gray information and spatial information,at the same time using hesitation degree to update the membership function of intuitionistic fuzzy sets.In view of the common standard image simulation experiment results show that the algorithm can keep the details of the image information better and obtain a more ideal image segmentation results.