位置:成果数据库 > 期刊 > 期刊详情页
基于d-邻域子图匿名的社会网络隐私保护
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013, [2]南通大学杏林学院,江苏南通226002
  • 相关基金:国家自然科学基金资助项目(60773049); 江苏省自然科学基金资助项目(BK2010192); 国家教育部博士点基金资助项目(20093227110005)
中文摘要:

社会网络分析可能会侵害到个体的隐私信息,需要在发布的同时进行隐私保护。针对社会网络发布中存在的邻域攻击问题,提出了基于超边矩阵表示的d-邻域子图k-匿名模型。该模型采用矩阵表示顶点的d-邻域子图,通过矩阵的匹配来实现子图的k-匿名,使得匿名化网络中的每个节点都拥有不少于k个同构的d-邻域子图。实验结果表明该模型能够有效地抵制邻域攻击,保护隐私信息。

英文摘要:

Preserving privacy is very necessary for social network information publishing,because analysis of social networks can violate the individual privacy.This paper proposed a k-anonymity model of d-neighborhood subgraph described by matrix of supe-edge.It transformed the anonymization of subgraph into matching the matrix which represented the d-neighborhood subgraph of vertex,and ensured that the numbers of isomorphic d-neighborhood subgraph was no less than k for every vertex.Experimental results show that the proposed model can effectively resist neighborhood attacks and preserve privacy information.

同期刊论文项目
期刊论文 73 会议论文 12 专利 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049