位置:成果数据库 > 期刊 > 期刊详情页
基于模糊贝叶斯网络算法的智能轮椅避障
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100124, [2]北京工业大学计算智能与智能系统北京市重点实验室,北京100124, [3]北京工业大学数字社区教育部工程研究中心,北京100124
  • 相关基金:国家自然科学基金项目(61175087)
中文摘要:

对传统BP神经网络模糊逻辑的智能轮椅避障方法在训练过程中存在的过拟合和避障路径不够优化的问题,提出了一种模糊贝叶斯网络避障算法以降低神经网络的复杂度;该算法利用模糊神经网络对隶属度函数的参数进行自主学习调整,同时为增强神经网络的泛化能力和计算能力,在网络目标函数中加入权衰减项,利用贝叶斯原理优化神经网络的结构和权值;仿真和实机实验表明,该算法在训练结果和避障效果上均优于传统BP神经网络,提高了智能轮椅避障的实时性,优化了避障路径,可满足用户对智能轮椅安全性和舒适性的需求。

英文摘要:

To solve the over-fitting problem caused by traditional obstacle avoidance method of intelligent wheelchair based on fuzzy logic during training process and the obstacle avoidance path is not optimized,we propose a new obstacle avoidance algorithm to reduce the complexity of the neural network in the training process with fuzzy Bayesian network.Fuzzy neural network is utilized to adjust parameters of membership functions.In order to obtain the ability of good generalization and accurate computing,a penalty term is introduced to the objective function to optimize the structure and the weights of neural networks using Bayesian method.Simulation and physical experiments show that this algorithm is better than the traditional BP network in the training process and the obstacle avoidance path is optimized to meet the users* needs of the comfort and security better.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924