为进一步提高有机废水的厌氧处理效率,同时实现能源物质的回收,采用微生物电解池并结合连续流工艺处理有机废水并同步回收甲烷,系统地研究不同水力停留时间、有机负荷、外加电压对微生物电解池内基质浓度的降解、甲烷生产速率等方面的影响.结果表明,在同一有机负荷下,随着外加电压(0.6 V,1.0 V,1.2 V)的升高,微生物电解池COD的去除效率和甲烷生产率也同时提高.在进水COD浓度为1 178 mg L^-1、水力停留时间为8 h、外加电压为1.2V的条件下,其COD去除率、甲烷浓度、甲烷产生速率分别为97.7%、96%、1 071 mL L^-1 d^-1,较普通厌氧发酵(对照组)分别提高了31.5%、13.6%、123%;当进水COD浓度为4 812 mg L^-1、水力停留时间为20 h、外加电压为1.2 V时,甲烷的产生速率达1 888 mL L^-1 d^-1,达理论产率的98.0%,而此条件下对照组甲烷产生速率仅为理论值的64.9%.说明连续流微生物电解池能够明显提高有机废水的处理效率,并实现处理过程中稳定回收甲烷的目的.高通量分析结果显示:微生物电解池阳极碳毡优势菌群为methanogens与Geobacter sp.,其丰度分别占总菌群的53.3%和7.5%,而对照组碳毡相应丰度仅为25.2%和0.7%.此外,研究发现有机负荷与电解池能量的消耗呈负相关,当外加电压为0.6 V时,有机负荷由3.5 kg m^-3d^-1提升至5.7 kg m^-3d^-1时,电解池能量消耗降低了79.3%.据此认为,通过优化水力停留时间和外加电压来处理有机废水并同步生产甲烷是可行的.
With a goal of improving the efficiency of the organic wastewater treatment and simultaneously achieving energy recovery in an anaerobic digestion(AD),this study aimed to complete organic wastewater treatment and methane production in a continuous-flow microbial electrolysis cell(MEC).We tried to find out the effects of hydraulic retention time(HRT),organic loading rate(OLR) and applied voltage(UAPP) on substrate removal and methane production rate(MPR).The results showed that the continuous flow MEC could obviously enhance the efficiency of wastewater treatment and achieve stable production of methane.Under the same organic loading,with the increase of applied voltage(0.6 V,1.0 V,1.2 V),the COD removal efficiency and MPR would increase simultaneously.With influent COD(CODinf) concentration of 1 178 mg L^-1,HRT was 8 h and UAPP 1.2V,the removal efficiency of COD,methane relative abundance and MPR were 97.7%,96.0%and 1 071 mL L^-1 d^-1,respectively,being 31.5%,13.6%and 123%,respectively,higher than the control.With influent COD(CODinf) concentration of 4 812 mg L^-1,HRT of 20 h,and UAPP of 1.2 V,the MPR was up to 1 888 mL L^-1 d^-1,98%of the theoretical MPR in a traditional anaerobic digestion process.The MPR of the blank control under the same condition was only 64.9%of the theoretical calculation.Highthroughput analysis showed that the anodic dominant bacterial community was methanogens and Geobacter sp.,53.3%and7.5%respectively of the total bacterial community;while in the control group,the corresponding content was only 25.2%and 0.7%.Additionally,a negative correlation was observed between the OLR and the total energy consumption.With UAPPof 0.6 V,OLR increased from 3.5 to 5.7 kg m^-3 d^-1,reducing the total energy consumption by 76%.Therefore,the continuousflow microbial electrolysis cell could be successfully used for simultaneous organic wastewater treatment and methane production under appropriate HRT and UAPP conditions.