We have performed the first-principles linear response calculations of the lattice dynamics, thermal equation of state and thermodynamical properties of hcp Os metal by using the plane-wave pseudopotential method. The ther-modynamical properties are deduced from the calculated Helmholtz free energy by taking into account the electronic contribution and lattice vibrational contribution. The phonon frequencies at Gamma point are consistent with ex- perimental values and the dispersion curves at various pressures have been determined. The calculated volume, bulk modulus and their pressure derivatives as a function of temperature are in excellent agreement with the experimental results. The calculated specific heat indicates that the electronic contribution is important not only at very low tem-peratures but also at high temperatures due to the electronic thermal excitation. The calculated Debye temperature at a very low temperature is in good agreement with experimental values and drops to a constant until 100 K.更多还原
We have performed the first-principles linear response calculations of the lattice dynamics, thermal equation of state and thermodynamical properties of hep Os metal by using the plane-wave pseudopotential method. The thermodynamical properties are deduced from the calculated Helmholtz free energy by taking into account the electronic contribution and lattice vibrational contribution. The phonon frequencies at Gamma point are consistent with ex- perimental values and the dispersion curves at various pressures have been determined. The calculated volume, bulk modulus and their pressure derivatives as a function of temperature are in excellent agreement with the experimental results. The calculated specific heat indicates that the electronic contribution is important not only at very low tem- peratures but also at high temperatures due to the electronic thermal excitation. The calculated Debye temperature at a very low temperature is in good agreement with experimental values and drops to a constant until 100 K.