位置:成果数据库 > 期刊 > 期刊详情页
基于分形技术的数据流突变检测算法
  • 期刊名称:《软件学报》, Vol. 17, No. 9. Sep. 2006. pp:1968-1979.
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]复旦大学计算机科学与工程系,上海200433
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant Nos.60496325, 60496327, 60503034 (国家自然科学基金); the Shanghai Rising-Star Program of China under Grant No.04QMX1404 (上海市青年科技启明星计划)
  • 相关项目:非规范知识交叉领域研究
中文摘要:

数据流上的突变检测技术由于其在风险分析、网络监测、趋势分析等领域广阔的应用前景而受到学术界和工业界越来越多的关注,为了在数据流上检测多个滑动窗口上的单调聚集函数值和非单调聚集函数值的突变,提出了基于分形技术的构建单调搜索空间的突变检测算法,首先给出了数据流上的分段分形模型,进而基于该模型设计了突变检测算法,该算法能够将突变检测处理时间复杂度从D(m)降为O(logm)(m为需要被检测的滑动窗口数目),提出的两种新颖的分段分形模型能够准确地对数据流的自相似性进行建模并压缩数据流,理论分析和实验结果表明,与已有研究成果相比,算法具有较高的精度和较低的时间/空间复杂度。更加适用于进行数据流的突变检测。

英文摘要:

Burst detection over data streams has been attracting more and more attention from academic and industry communities due to its broad potential applications in venture analysis, network monitoring, trend analysis and so on. This paper aims at detecting bursts of both monotonic and non-monotonic aggregates over multiple windows in data streams. A burst detection algorithm through building monotonic search space based on fractal technique is proposed. First, the piecewise fractal model on data stream is introduced, and then based on this model the algorithm for detecting bursts is presented. The proposed algorithm can decrease the time complexity from O(m) to O(logm), where m is the number of sliding windows being detected. Two novel piecewise fractal models can model the self-similarity and compress data streams with high accuracy. Theoretical analysis and experimental results show that this algorithm can achieve a higher precision with less space and time complexity as compared with the existing methods, and it could be concluded that the proposed algorithm is suitable for burst detection over data streams.

同期刊论文项目
期刊论文 134 会议论文 68 著作 2
期刊论文 4 会议论文 6
同项目期刊论文