牛顿的急动的动力学被用于惯性的不稳定性分析在可变力量的行动下面学习大气的运动的非线性的特征。牛顿的急动的功能的理论分析被用来为惯性的不稳定性澄清标准,包括绝对涡度(g ) 和行星的涡度(效果) 的南方的分布的影响。结果显示绝对涡度的南方的结构在惯性的运动的动态特征起一个基本作用。包括仅仅效果(与经常的 g 的假设) 不改变不稳定性标准或流动的动态特征,但是把效果与 g 的南方的变化相结合介绍显著地影响不稳定性标准的非线性。数字分析被用来在阶段空间在参数,以及他们的轨道的不同集合下面导出位置,速度,和加速的时间系列。运动学的变量的时间进化显示在加速的一个常规像波浪的变化通信在位置和速度稳定像波浪的变化,当时在加速的快速的生长(在对包裹起作用的力量由快速的增强引起了) 通信在方向追踪移动和突然的变化。在 f 飞机和飞机近似下面的稳定的限制盒子产出周期的像波浪的答案,当不稳定的限制盒子在所有变量产出指数的生长时。使不安在起始的位置(0 ) 的绝对涡度的价值在稳定性和运动的动态特征导致重要变化。非线性的术语的改进可以引起混乱行为出现,建议到惯性的运动的可预测性的限制。
Newtonian jerky dynamics is applied to inertial instability analysis to study the nonlinear features of atmospheric motion under the action of variable forces. Theoretical analysis of the Newtonian jerky function is used to clarify the criteria for inertial instability, including the influences of the meridional distributions of absolute vorticity (ζg) and planetary vorticity (the ζ effect). The results indicate that the meridional structure of absolute vorticity plays a fundamental role in the dynamic features of inertial motion. Including only the ζ effect (with the assumptionof constant ζg) does not change the instability criteria or the dynamic features of the flow, but combining the β effect with meridional variations of ζg introduces nonlinearities that significantly influence the instability criteria. Numerical analysis is used to derive time series of position, velocity, and acceleration under different sets of parameters, as well as their trajectories in phase space. The time evolution of kinematic variables indicates that a regular wave-like change in acceleration corresponds to steady wave-like variations in position and velocity, while a rapid growth in acceleration (caused by a rapid intensification in the force acting on ,the parcel) corresponds to track shifts and abrupt changes in direction. Stable limiting cases under the f- and f-plane approximations yield periodic wave-like solutions, while unstable limiting cases yield exponential growth in all variables. Perturbing the value of absolute vorticity at the initial position (ζ0) results in significant changes in the stability and dynamic features of the motion. Enhancement of the nonlinear term may cause chaotic behavior to emerge, suggesting a limit to the predictability of inertial motion.