我们扩大由于 Peng-Terng, Wei-Xu 和 Suh-Yang 拧定理的分级的弯曲。让 M 一个 n 维的协议是在 S n+1 的最小的 hypersurface 令人满意的 Sf 4 吗? f 32 $ \tfrac { 1 }{ n }$ \tfrac { 1 }{ n } S 3 ,在 S 是第二个基础的摆平的标准的地方, M 形成,并且 f k $ \sum\limits_i { \lambda _i ^ k }$ \sum\limits_i { \lambda _i ^ k }并且 i ( 1 i n )是 M 的主要弯曲。我们证明那在那里存在仅仅取决于 n 的积极经常的(n)( n/2 )以便如果 n S n+(n),那么 S n ,即,吗 M 是克利福德花托之一$ S ^ k ( \sqrt { \tfrac { k }{ n }}) \times S ^{ n - k }( \sqrt { \tfrac {{ n - k }}{ n }})$ S ^ k ( \sqrt { \tfrac {吗 k }{ n }}) \times S ^{ n - k }( \sqrt { \tfrac {{ n - k }}{ n }})为 1 k n ?1。而且,如果 S 是一个常数,我们证明那,那么在那里存在积极经常的(n)(n?$\tfrac { 2 }{ 3 }$\tfrac { 2 }{ 3 } 仅仅取决于 n 以便如果 n S
We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S^n+1 satisfying S f4 - f^2 3 ≤1/nS^3 where S is the squared norm of the second fundamental form of M, and fk = ∑λi^k and λi(1 ≤ i ≤ n) are the principal curvatures of M. We prove that there exists a positive constant δ(n)(≥ n/2) depending only on n such that if n ≤ S ≤ n +δ(n), then S ≡ n, i.e., M is one of the Clifford torus S^K (√k/n) × S^n-k (V√n-k/n) for 1≤ k ≤ n - i. Moreover, we prove that if S is a constant, then there exists a positive constant T(n)(≥ n -2/3) depending only on n such that ifn ≤ S 〈 n + τ(n), then S ≡n, i.e.. M is a Clifford torus.