利用极值原理和上下解方法给出了具有Sturm-Liouville边界条件的四阶奇异微分方程C^2[0,1]和C^3[0,1]正解的存在性,允许非线性项f(t,u)在u=0和t=0,1处可以是奇异的。
A class of fourth order singular differential equations with Sturm-Liouville boundary conditions is investigated by the extremum principle and the upper and lower solution method.The nonlinear term f(t,u)can be singular at u=0 and t=0,1.