位置:成果数据库 > 期刊 > 期刊详情页
遮挡情况下多尺度压缩感知跟踪
  • ISSN号:1001-8891
  • 期刊名称:《红外技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北方民族大学数学与信息科学学院,宁夏银川750021
  • 相关基金:国家自然科学基金项目,编号:61440044,61102008,61462002,61163017;宁夏自然科学基金项目,编号:NZ13097,国家民委科研项目编号:14BFZ003.
中文摘要:

针对现有在线学习跟踪算法中目标在线模型更新错误导致跟踪漂移的问题,提出一种在线模型自适应更新的目标跟踪算法:首先利用压缩感知技术的高效性,对多尺度图像特征进行降维,并提取多尺度样本来实现目标尺度自适应更新,再由提取的正负样本低维图像特征训练朴素贝叶斯分类器,利用分类器输出置信度最大处目标样本完成目标跟踪,并依据当前目标置信度来自适应在线模型更新速率,减少了遮挡带来的目标错误更新。实验表明:该方法在尺度变化、局部和全局遮挡、光照变化等情况下均能完成鲁棒跟踪,平均跟踪成功率较原始压缩感知跟踪算法提高了20.3%。

英文摘要:

In order to deal with the drift problem by updating error in current online learning tracking algorithms, a new adaptive update tracking algorithm is proposed. First of all, based on the efficiency of compressed sensing, the multi-scale image feature space is decreased, and multi-scale samples are exacted to update the target scale. Secondly, a naive Bayes classifier is trained by low dimension image features from positive and negative samples. Experimental results show that the proposed algorithm can complete the robust tracking under the condition of scale changes, partial and full occlusion, illumination changes, etc. Tracking successful rate is improved by 20.3% compared with the original compressive tracking.

同期刊论文项目
期刊论文 21 会议论文 1
同项目期刊论文
期刊信息
  • 《红外技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器工业集团公司
  • 主办单位:昆明物理研究所 中国兵工学会夜视技术专业委员会 微光夜视技术重点实验室
  • 主编:苏君红
  • 地址:昆明市教场东路31号
  • 邮编:650223
  • 邮箱:irtek@china.com
  • 电话:0871-5105248
  • 国际标准刊号:ISSN:1001-8891
  • 国内统一刊号:ISSN:53-1053/TN
  • 邮发代号:64-26
  • 获奖情况:
  • 2006兵器集团一等奖,2004、2009年云南省优秀期刊
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8096