基于准玻色方法,解析求解了环境作用下一维耦合腔阵列耦合一个量子化腔场驱动的级联型三能级原子系统中单光子输运的反射率、透射率和相应等效势的表达式,并详细讨论了耗散情况下控制参数对单光子输运的影响.研究结果表明:在实验范围内选择合适的参数时,原子耗散和腔场耗散都能使反射率峰值降低,但原子耗散影响反射率较大,同等参数取值条件下反射率峰值减小更为显著;更为重要的是对于在环境作用下的体系,通过调节原子和腔场之间的失谐以及驱动量子化腔场的光子数仍可使单光子接近达到全反射.
In this paper, a new kind of quasi-boson method is used to eliminate the coordinates of the environment and redescribe the dissipative system by using an effective Hamiltonian; the localized mode and the interaction between cavities can be renormalized. Based on the quasi-boson approach, the single photon transport in one-dimensional coupled cavity array, with a driven cascade-type three-level atom embedded in one of the cavity, is investigated under the influence of the environment. The single-photon transmission and the reflection amplitudes are obtained analytically. And the additional effective potential induced by the interaction between the atom and the cavity is also derived. The effects of the controlling parameters on the reflection and transmission amplitudes are discussed with considering the dissipation, It is shown that the decay rates of the atoms and the cavity both reduce the reflection spectrum. But the dissipation of the atom has a significant influence on the reflection amplitude compared with the cavity decay under the same conditions. Due to the irreversible loss of energy, the photon number is non-conservative. Furthermore, the single-photon can be almost reflected by the three-level atom in the dissipative case when one adjusts the detuning and photon number of the quantized cavity field. The investigation will be of benefit to the realization of photon transport in a real experiment, which is also helpful for manipulating the photons in quantum information and quantum simulation.