位置:成果数据库 > 期刊 > 期刊详情页
一种广义加权模糊聚类算法
  • ISSN号:1671-4512
  • 期刊名称:《华中科技大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学雷达信号处理国家重点实验室, [2]西安电子科技大学电子工程学院,陕西西安710071, [3]陕西西安710071
  • 相关基金:国家自然科学基金资助项目(No.60102005);; 国家重点实验室基金资助项目(J14203220033)
中文摘要:

提出了一种广义的加权模糊聚类新算法来处理具有不同特征贡献和不同数据分布的混合属性数据.分别利用样本概率密度思想和ReliefF算法为每一个样本和每一维特征分配权值,通过样本和特征的加权,将模糊c均值算法、模糊c-modes算法、模糊c-原型算法以及样本加权聚类算法统一为一个通用的框架.不同测试数据集的实验结果证明,这种广义的模糊聚类新算法对于处理不同分布以及具有不同特征贡献的大数据集是相当有效的.

英文摘要:

A new general Weighted Fuzzy Clustering Algorithm is proposed to deal with the mixed data including different feature contribution and different sample distribution,in which the idea of the probability density of samples is used to assign the weights for every samples and the ReliefF algorithms is applied to give the weights for every features.By weighting the samples and their features,the fuzzy c-means,fuzzy c-modes,fuzzy c-prototype and sample-weighted clustering algorithms can be unified into a general ...

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华中科技大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:丁烈云
  • 地址:武汉珞喻路1037号
  • 邮编:430074
  • 邮箱:hgxbs@mail.hust.edu.cn
  • 电话:027-87543916 87544294
  • 国际标准刊号:ISSN:1671-4512
  • 国内统一刊号:ISSN:42-1658/N
  • 邮发代号:38-9
  • 获奖情况:
  • 全国优秀科技期刊,首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21013