提出了一个基于统计理论的产流模型,该模型考虑了降雨、土壤下渗能力及土壤蓄水容量的空间变异性。假定每个时段的降雨量在空间上可以用概率密度函数或分布函数描述,根据实测降雨资料通过统计拟合优度途径估计各时段降雨的空间概率分布;采用抛物线型函数分别描述土壤下渗能力和土壤蓄水容量的空间分布。按照超渗产流机制计算地表产流量,通过降雨量和土壤下渗能力的联合分布推导得到地表径流量的统计分布,进而得到平均产流量的解析表达式。下渗水量补充土壤含水量,假定满足田间持水量后形成地下径流,其产流量根据下渗量和土壤蓄水容量的空间分配曲线进行计算。以半湿润的黄河支流伊河东湾流域为例,对模型进行了验证和应用,并与新安江模型的结果进行了对比。结果表明,模型对所研究的半湿润区的洪水模拟预报有较好的模拟效果。
Based on statistical theory, a runoff-yield model, considering the spatial variations of rainfall, soil infiltration ca- pacity and water storage capacity, is proposed in this paper. It is supposed that the spatial variations of a rainfall event could be described using a Probability Density Function(PDF) or a Cumulative Distribution Function(CDF), and the specific PDF or CDF at every time step of the rainfall event is estimated by adopting the goodness-of-fit approach to match the curve with the real rainfall data. The parabolic types of mathematical functions are used to represent the spatial distributions of soil infiltration capacity and water storage capacity. According to the joint probability distribution of rainfall and soil infiltration capacity, the distribution of surface runoff is deduced from the infiltration excess mechanism, and the further analytical solution to surface runoff is obtained. Infiltration supplements soil moisture, and when infiltration reaches the field capacity, it yields the ground- water flow which is calculated with the amounts of infiltration and the distribution of the water storage capacity. For instance, the proposed model is applied to Dongwan Basin, a semi-humid region located at the middle reach of Yellow River. Results are also compared with those obtained by the Xinanjiang model. It turns out that the statistically-based runoff-yield model could achieve the promising results with acceptable accuracy for flood events' simulation and forecast.