We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical parametric oscillator as the pump source.The power of the 2μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves.Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power,which was in good agreement with the theoretical analysis.Based on an 8 mm long GaSe crystal,the THz wave was continuously tuned from 0.21 to 3 THz.The maximum THz average power of 1.66μW was obtained at repetition rate of 10 kHz under 1.48 THz.The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×10-6.The signal-to-noise ratio of the detected THz voltage was 23 dB.The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.