发展中的趋势连续变量(CV ) measurement-device-independent (MDI ) 量密码学是应付实现可伸缩的量网络的实际问题。直到现在,关于 CV-MDI QKD 的很理论、试验性的研究集中于两大政党的协议。然而,我们建议分享的一个 CV-MDI 多国参加的量秘密(QSS ) EPR 说的协议使用结合了光放大器。更显著,换句话说, QSS 是在多国参加的 CV-MDI QKD 的真实应用程序是多国参加的 CV-MDI QKD 的具体实现方法。它能实现一个实际的量网络计划,法律参加者由使用经由不可靠的连接与一个 untrusted 继电器连接并且使用多纠缠的 Greenberger-Horne-Zeilinger (GHZ ) 的 EPR 状态在下面创造秘密关联在继电器车站的州的分析。就算有可能性,继电器可以完全被捣弄,法律参加者仍然能从网络通讯提取一把秘密钥匙。数字模拟显示量网络通讯能在一种不对称的情形被完成,完成一个实际的量网络的要求。另外,我们说明光放大器的使用能补偿察觉者的部分固有的瑕疵并且增加 CV-MDI 量系统的传播距离。
The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing sealable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.