群G的一个子群H称为在G中S-拟正规嵌入,如果对于任意的素数p|H,H的Sylowp-子群也是G的某个S-拟正规子群的Sylowp-子群。称群G的子群H在G中弱S-拟正规嵌入,如果存在群G的正规子群T,使得HTG且H∩T在G中是S-拟正规嵌入的,本文利用弱S-拟正规嵌入子群的概念,研究了超可解群的构造,得出了一些新结果:设群G是p-可解群,p是整除G的素因子。1)如果Fp(G)的每一个包含Op′(G)的极大子群在G中弱S-拟正规嵌入,则G是p-超可解群;2)如果Fp(G)的非循环的Sylowp-子群的任意极大子群在G中是弱S-拟正规嵌入的,则G是p-超可解群。