位置:成果数据库 > 期刊 > 期刊详情页
多目标遗传算法改进的加权多点灰色模型
  • ISSN号:1009-2307
  • 期刊名称:《测绘科学》
  • 时间:0
  • 分类:P207[天文地球—测绘科学与技术]
  • 作者机构:[1]西南交通大学地球科学与环境工程学院,成都610031, [2]西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室,成都610031, [3]成都铁路局成都高铁工务段,成都610000
  • 相关基金:长江学者和创新团队发展计划基金项目(IRT13092);高速铁路运营安全空间信息技术国家地方联合工程实验室资助项目
中文摘要:

针对传统多点灰色预测模型MGM(1,n)白化背景值构造方法不合理性导致模型往往不符合变形体实际情况的问题,该文提出了一种基于遗传算法的加权MGM(1,n)模型。引入白化背景值最佳生成权值矩阵替换传统模型背景值构造公式中的紧邻均值生成权阵,较好地顾及变形区域内多监测点变形趋势的突变性与不规则性,弥补了线性系统MGM(1,n)模型在非线性动力学系统变形预测分析应用中的不足;建立多目标优化实数编码遗传算法,实现背景值最优构造权阵的迭代搜索。基于仿真和工程实例数据的建模结果表明:改进模型较传统MGM(1,n)模型预测精度提高,抗噪声干扰能力增强。

英文摘要:

Considering the issue that traditional MGM(1, n)model is usually not consistent with the actual situation of the deformation object because of fallacious construction method of whitening back- ground value, a weighted MGM(1, n)model based on genetic algorithm was proposed. A weight matrix for optimum generation of background value was introduced to substitute adjacent mean generating weight matrix in background value construction formula of traditional model, which could fit mutation and irregu- larity of the deformation trend for multi-points in the deformation region better then the deficiency of ap- plying MGM(1, n)model based on linear system to deformation prediction which is nonlinear dynamical systems was made up. A multi-objective optimization real-coded genetic algorithm was applied to calculate the optimal weight matrix through iterative search. Simulation results showed that the forecasting accura- cy and anti-noise interference capability of improved model were better than traditional MGM(1, n)model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《测绘科学》
  • 中国科技核心期刊
  • 主管单位:国家测绘地理信息局
  • 主办单位:中国测绘科学研究院
  • 主编:程鹏飞
  • 地址:北京市海淀区莲花池西路28号
  • 邮编:100830
  • 邮箱:niu@casm.ac.cn
  • 电话:010-63880931
  • 国际标准刊号:ISSN:1009-2307
  • 国内统一刊号:ISSN:11-4415/P
  • 邮发代号:2-945
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21361