位置:成果数据库 > 期刊 > 期刊详情页
基于经验模态分解的分数维地震随机噪声衰减方法
  • ISSN号:0001-5733
  • 期刊名称:《地球物理学报》
  • 时间:0
  • 分类:P631[天文地球—地质矿产勘探;天文地球—地质学]
  • 作者机构:[1]国土资源部油气资源和环境地质重点实验室,中国地质调查局青岛海洋地质研究所,山东青岛266071, [2]青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室,山东青岛266071, [3]中国地质大学北京地球物理与信息技术学院,北京100083
  • 相关基金:山东省自然科学基金培养基金项目(ZR2015PD006),国土资源部公益性行业科研专项(201511037)资助
中文摘要:

经验模态分解算法(EMD)是一种基于有效波和噪声尺度差异进行波场分离的随机噪声压制方法,但由于实际地震数据波场复杂,导致模态混叠较严重,仅凭该方法进行去噪很难达到理想效果.本文基于EMD算法对信号多尺度的分解特性,结合Hausdorff维数约束条件,提出一种用于地震随机噪声衰减的新方法.首先对地震数据进行EMD自适应分解,得到一系列具有不同尺度的、分形自相似性的固有模态分量(IMF);在此基础上,基于有效信号和随机噪声的Hausdorff维数差异,识别混有随机噪声的IMF分量,对该分量进行相关的阈值滤波处理,从而实现有效信号和随机噪声的有效分离.文中从仿真信号试验出发,到模型地震数据和实际地震数据的测试处理,同时与传统的EMD处理结果相对比.结果表明,本文方法对地震随机噪声的衰减有更佳的压制效果.

英文摘要:

Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation, which is based on the scale differences between effective signal and noise. However, because the complexity of the real seismic wave field can result in serious aliasing modes, it is not ideal and effective to denoise using this method alone. Based on the multi-scale decomposition characteristics of the EMD algorithm for signal, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. Firstly, we apply EMD algorithm adaptive decomposition of seismic data to obtain a series of IMF components with different scales. On this basis, based on the difference of Hausdorff dimension between effective signals and random noise, we identify IMF component mixed with random noise. Then we use the threshold correlation filtering process to separate the valid signal and random noise effectively. This method includes three steps, i.e. simulation signal experiment, the seismic model data processing and real seismic data processing. Compared with traditional EMD method, this new method of seismic random noise attenuation has a better suppression effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地球物理学会 中国科学院地质与地球物理研究所
  • 主编:刘光鼎
  • 地址:北京9825信箱
  • 邮编:100029
  • 邮箱:actageop@mail.igcas.ac.cn
  • 电话:010-82998105
  • 国际标准刊号:ISSN:0001-5733
  • 国内统一刊号:ISSN:11-2074/P
  • 邮发代号:2-571
  • 获奖情况:
  • 首届国家期刊奖,第二届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国地质文献预评数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),美国石油文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:31618