根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中分析仅仅取决于动态系统的 I/O 数据。换句话说,没有知道系统的任何另外的知识,我们能容易选择控制参数。模拟学习沿着重复轴说明介绍方法的几何集中,在哪个马路的一个例子控制为它的内在的工程重要性是引人注目的交通反复的学习。
On the basis of a new dynamic linearization technology along the iteration axis, a dual-stage optimal iterative learning control is presented for nonlinear and non-affine discrete-time systems. Dual-stage indicates that two optimal learning stages are designed respectively to improve control input sequence and the learning gain iteratively. The main feature is that the controller design and convergence analysis only depend on the I/O data of the dynamical system. In other words, we can easily select the control parameters without knowing any other knowledge of the system. Simulation study illustrates the geometrical convergence of the presented method along the iteration axis, in which an example of freeway traffic iterative learning control is noteworthy for its intrinsic engineering importance.