位置:成果数据库 > 期刊 > 期刊详情页
一种改进的基于密度的抽样聚类算法
  • ISSN号:1006-8961
  • 期刊名称:中国图象图形学报
  • 时间:0
  • 页码:478-482
  • 语言:中文
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学信息科学与技术学院,南京210016
  • 相关基金:国家自然科学基金项目(60673127);江苏省自然科学基金项目(BK2001045)
  • 相关项目:具有可生存能力的安全DBMS关键技术研究
中文摘要:

基于密度的聚类算法DBSCAN是一种有效的空间聚类算法,它能够发现任意形状的聚类并且有效地处理噪声。然而,DBSCAN算法也有一些缺点,例如,①在聚类时只考虑空间属性没有考虑非空间属性;②在对大规模空间数据库进行聚类分析时需要较大的内存支持和//O消耗。为此,在分析DBSCAN算法不足的基础上,提出了一种改进的基于密度的抽样聚类(improved density-based spatial clustering algorithm with sampling,IDBSCAS)算法,使之能够有效地处理大规模空间数据库,并且它不仅考虑了空间属性也考虑了非空间属性。2维空间数据的测试结果表明,该算法是可行、有效的。

英文摘要:

DBSCAN is one of the effective spatial clustering algorithms, which can discover clusters of any arbitrary shape and handle the noise effectively. However, it has also several disadvantages. First, it is based on only spatial attributes without considering non-spatial attributes in the databases. Second, when DBSCAN handles large-scale spatial databases, it requires large volume of memory support and I/O cost. In this paper, an improved density-based spatial clustering algorithm with sampling(IDBSCAS) is developed, which not only clusters large-scale spatial databases effectively, but also considers spatial attributes and non-spatial attributes. Experimental results of 2-D spatial datasets show that the new algorithm is feasible and efficient.

同期刊论文项目
期刊论文 47 会议论文 6 专利 3
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0