运用概率的方法研究了算术级数U的子集的最小公倍数。证明了对任意的0〈θ〈1,对几乎所有长度为[n^θ]的U的子集A,都有loglcm{a:a∈A}=(1-θ)n^θlogn+o(n^θ)。
For a positive arithmetic progression U={u+d,u+2d,…,u+nd},( u,d)=1,we study the logarithm of the least common multiple of subsets of the set U. We show that for any 0〈θ〈1,loglcm{a:a∈A}=(1-θ)n^θlogn+o(n^θ) for almost all sets A∩U of size [ n^θ] .