位置:成果数据库 > 期刊 > 期刊详情页
非负特征基约束的人脸超分辨率
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学国家多媒体软件工程技术研究中心,湖北武汉430072, [2]武汉大学软件工程国家重点实验室,湖北武汉430072, [3]武汉大学计算机学院,湖北武汉430072
  • 相关基金:基金项目:国家“九七三”重点基础研究发展计划基金项目(2009CB320906)资助;国家自然科学基金项目(60772106,60970160)资助;公安部重点攻关计划(2008ZDXMHBST011);软件工程国家重点实验室开放基金(902110360)资助.
中文摘要:

主成分分析(PCA)是人脸超分辨率中常用的人脸图像表达方法,但是PCA方法的特征是整体的且难以语义解释.为了使表达的结果更好地用于合成超分辨率人脸图像,提出一种非负特征基约束的人脸超分辨率算法.该算法利用非负矩阵分解(NMF)获取样本人脸图像的非负特征基,结合最大后验概率的方法,对目标图像进行马尔可夫随机场正则约束,最速下降法优化得到高分辨率人脸图像的非负特征基系数.实验结果表明,在主客观质量上,非负特征基约束的人脸超分辨率算法的性能胜过基于PCA的算法.

英文摘要:

Principal Component Analysis ( PCA ) is commonly used for human face images representation in face super-resolution. But the features extracted by PCA are holistic and difficult to have semantic interpretation. In order to synthesize a better super-resolution face image with the results of the face images representation, we propose face a super-resolution algorithm with non-negative featrue basis constraint. The algorithm uses the NMF to obtain non-negative featrue basis of face sample images, and the target image is regu- larized by Markov random fields, with maximum a posteriori probability approach. Finally, the steepest descent method is used to op- timize non-negative featrue basis coefficient of high-resolution image. Experimental results show that, in the subjective and objective quality, the face super-resolution algorithm with non-negative feature basis constrait performs better than PCA-based algorithms.

同期刊论文项目
期刊论文 22 会议论文 25 获奖 6 专利 34 著作 1
期刊论文 16 会议论文 21 专利 5
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212