位置:成果数据库 > 期刊 > 期刊详情页
《操作系统》教与学模式改革
  • ISSN号:1007-1423
  • 期刊名称:《现代计算机:上下旬》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TH761.7[机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]辽宁工程技术大学电子与信息工程学院,葫芦岛125105, [2]大连理工大学计算机科学与技术学院,大连116024
  • 相关基金:国家自然科学基金(61402212)、国家科技支撑计划(2013BAH12F00)项目资助
中文摘要:

在遥感影像研究领域里,高光谱数据分类是一个热点问题。近年来,在这个问题上涌现出很多研究方法,然而,大多数方法都是用浅层的方法提取原始数据的特征。将深度学习的方法引入高光谱图像分类中,提出一种新的基于深信度网络(DBN)的特征提取方法和图像分类架构用于高光谱数据分析。将谱域-空域特征提取和分类器相结合提高分类精度。使用高光谱数据进行实验,结果表明该分类器优于当前的一些先进的分类方法。此外,本文还揭示了深度学习系统在高光谱图像分类研究中具有的巨大潜力。

英文摘要:

In remote sensing image research area, hyperspectral data classification is a hot topic. In recent years, many study methods for this issue emerge; however, the majority of the methods adopt the shallow layer method to extract the characteristics of original data. In this paper, the deep study method is introduced in the hyperspectral image classification; a new characteristic extraction method and image classification construction based on deep belief network (DBN) is proposed, and used in hyperspectral data analysis. The spectral-spatial feature extraction and classifier are combined together to achieve high classification accuracy. Experiment was carried out using the hyperspectral data; experiment results indicate that the proposed classifier is superior to some current advanced classification methods. In addition, this paper also reveals that the deep learning system has great potential in the study of hyperspectral image classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代计算机:中旬刊》
  • 主管单位:中山大学
  • 主办单位:中大控股
  • 主编:林楚昭
  • 地址:广州市新港西路135号中山大学园东区106栋西座1楼
  • 邮编:510275
  • 邮箱:tougao@moderencomputer.cn
  • 电话:020-84110804
  • 国际标准刊号:ISSN:1007-1423
  • 国内统一刊号:ISSN:44-1415/TP
  • 邮发代号:46-205
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1102