de 保姆不变的特殊相关性(dS-SR ) 是有经常的弯曲,和平常的爱因斯坦 SR (E-SR ) 的自然延期的 SR。在这份报纸,我们借助于断热的途径和 QM 的伪静止的不安计算解决氢的 dS-SR 迪拉克方程。氢原子位于宇宙的轻锥。FRW 度量标准和 CDM 宇宙论的模型被用来讨论这个问题。到原子, de 保姆时空几何学的效果由 Beltrami 度量标准描述了被考虑。dS-SR 迪拉克方程结果是一个倍依赖者量 Hamiltonian 系统。我们揭示那:(i) 基本物理常数我,, e 变量断热地与在 dS-SR QM 的 cosmologic 时间一起框架。但是好结构的经常的 e2/(c) 坚守不变;(ii )(2s1/22p1/2 ) 由于 dS-SR QM 效果切开:借助于不安理论,那切开的 E (z) 是计算经分解,它属于(1/R2 ) dS-SR QM 的物理。数字地,我们发现那什么时候 | R |{ 103 Gly, 104 Gly, 105 Gly } ,并且 z { 1,或 2 } , E (z) 1 (兰姆移动) 。这显示为这些, hyperfine 结构由于证完完成的盒子能被忽略,并且 dS-SR 罚款结构效果是主导的。这效果能被用来在 dS-SR 决定通用经常的 R,并且在 E-SR 以外作为一个新物理被认为。
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.