设A∈B(H),B∈B(K)为给定的两个算子,用MC=(A C0B)表示作用在HK上的上三角算子矩阵。通过定义新的预解集,探讨了矩阵中分量A,B在该集合中所具有的性质,使得MC满足单值延拓性质的微小紧摄动。同时研究了上三角算子矩阵MC满足单值延拓性质的微小紧摄动的充要条件,并且举例说明主要定理中所给条件的本质性。
When A∈B(H),B∈B(K) are given, we denote by Mc an upper triangular operator matrix, acting on the Hilbert space H + K, of the form Mc =(A C0B).The properties of the component A ,B are discussed in the matrix such that Mc satisfies the single-valued extension property of small compact perturbation by defining a kind of new resolvent set. The necessary and sufficient conditions for upper triangular operator matrix which satisfies the single-valued exten- sion property under small compact perturbation are studied, and some examples are given to illustrate the essence of the conditions given in the main theorem.