借助模3的剩余类,利用矩阵算子M^*作用在零点集Z0和Z0^~上的周期性,讨论了由矩阵M=(0^a b^c)(a,b,c∈Z,|a|〉1,|c|〉1.ac 3Z)和数字集D={(0^0),(0^1),(0^l)}(l∈Z/{0,1})所决定的L^2(μM,D)空间中正交指数函数的最大个数。
By use of the residue class of three and the periodicity of the matrix operator M^* when it acts on zero-point sets Zo and Z0^~, the biggest number of the orthogonal exponential functions for the L^2 (μM,D) space which is determined by the matrixM=(0^a b^c)(a,b,c∈Z,|a|〉1,|c|〉1.ac 3Z) and the digit setD={(0^0),(0^1),(0^l)}(l∈Z/{0,1}) is discussed.