位置:成果数据库 > 期刊 > 期刊详情页
基于新模型的多目标Memetic算法及收敛分析
  • ISSN号:1000-8152
  • 期刊名称:《控制理论与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学数学科学系,陕西西安710071, [2]西安电子科技大学计算机学院,陕西西安710071
  • 相关基金:基金项目:国家自然科学基金资助项目(60374063).
中文摘要:

将多目标函数优化问题转化成单目标约束优化问题.对转化后的问题提出了基于约束主导原理的选择方法,克服了多数方法只使用Pareto优胜关系作为选择策略而没有采用偏好信息这一缺陷;Memetic算法是求解多目标优化问题最有效的方法之一,它融合了局部搜索和进化计算.新的多目标Memetic算法引进C-metric,将模拟退火算法与遗传算法结合起来,改善了全局搜索能力.用概率论的有关知识证明了算法的收敛性.仿真结果表明该方法对不同的试验函数均可求出一组沿着Pareto前沿分布均匀且散布广泛的非劣解.

英文摘要:

The multi-objective optimization problem is converted into a constrained optimization problem. Based on the constraint dominance principle, a new selection strategy is proposed for the converted problem to remove the drawback in most algorithms taking Pareto dominance as selection strategy but ignoring preference information. Memetic algorithm is one of the most efficient algorithms for optimizing multi-objective problems, incorporating local search into evolutionary computation. The new multi-objective Memetic algorithm combines the genetic algorithm with simulated annealing algorithm by introducing the C-metric to improve the global search ability. The convergence of this algorithm is proved with related theories of probability. Simulation results demonstrate the ability of the new algorithm in finding the uniformly distributed and widely-spread non-trivial solutions on the entire Pareto front.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084