位置:成果数据库 > 期刊 > 期刊详情页
基于差分隐私的轨迹模式挖掘算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP309.2[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:河南财经政法大学计算机与信息工程学院,郑州450002
  • 相关基金:国家自然科学基金资助项目(61502146,91646203);河南省自然科学基金资助项目(162300410006);河南省科技攻关项目(162102310411);河南省教育厅高等学校重点科研项目(16A520002);河南财经政法大学青年拔尖人才项目.
中文摘要:

针对现有基于差分隐私的频繁轨迹模式挖掘算法全局敏感度过高、挖掘结果可用性较低的问题,提出一种基于前缀序列格和轨迹截断的差分隐私下频繁轨迹模式挖掘算法——LTPM。该算法首先利用自适应的方法获得最优截断长度,然后采用一种动态规划的策略对原始数据库进行截断处理,在此基础上,利用等价关系构建前缀序列格,并挖掘频繁轨迹模式。理论分析表明LTPM算法满足g一差分隐私;实验结果表明,LTPM算法的准确率(TPR)和平均相对误差(ARE)明显优于N-gram和Prefix算法,能有效提高挖掘结果的可用性。

英文摘要:

To address the problems of high global query sensitivity and low utility of mining results in the existing works, a Lattice-Trajectory Pattern Mining (LTPM) algorithm based on prefix sequence lattice and trajectory truncation was proposed for mining sequential patterns with differential privacy. An adaptive method was employed to obtain the optimal truncation length, and a dynamic programming strategy was used to truncate the original database. Based on the truncated database, the equivalent relation was used to construct the prefix sequence lattice for mining trajectory patterns. Theoretical analysis shows that LTPM satisfies c-differential privacy. The experimental results show that the True Postive Rate (TPR) and Average Relative Error (ARE) of LTPM are better than those of N-gram and Prefix algorithms, which verifies that LTPM can effectively improve the utility of the mining results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679