位置:成果数据库 > 期刊 > 期刊详情页
基于随机松弛的离散HMM参数估计和信号恢复
  • ISSN号:0258-8021
  • 期刊名称:《中国生物医学工程学报》
  • 时间:0
  • 分类:R318.5[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:[1]天津大学生物医学工程系,天津300072, [2]山西大学电子信息技术系,太原030006
  • 相关基金:国家自然科学基金资助项目(60174032).
中文摘要:

细胞膜离子单通道信号是皮安级的跨膜随机离子电流,由于信号的微弱性,膜片钳技术记录中单通道电流往往淹没在强背景噪声中.传统上采用阈值检测器来恢复通道电流信号,这需要人为设定阈值,尤其是信噪比低时,阈值检测器失效.本研究采用隐马尔可夫模型(HMM)的通道信号恢复及参数估计技术,首先利用基于随机松弛(SR)的离散HMM参数全局优化算法,估计通道的动力学参数,确保模型训练中参数收敛到全局最优.在此基础上,从噪声污染的膜片钳记录中恢复通道电流信号.理论和实验结果表明,在低信噪比情况下(SNR<5.0),该方法用于白噪声背景下细胞膜离子单通道参数估计和信号恢复时,参数收敛速度快,信号恢复精度高,算法抗噪能力强,可以较好地描述实际对象特性.

英文摘要:

Ionic single-channel signal of cell membrane is a stochastic ionic current in the order of picoampere (pA). Because of weakness of the signal, the background noise always dominates in the patch-clamp recordings. The threshold detector was traditionally used to denoise and restore the single channel current, however, often failed when signal-to-noise ratio was lower. An approach based on hidden Markov model (HMM) was presented in this article to restore ionic single-channel current under the strong background noise. In the study, a global optimization algorithm based on stochastic relaxation (SR) was used to estimate the HMM's parameters and to ensure the parameters' convergence to a global optimization. The ideal channel currents were reconstructed applying Viterbi algorithm from the patch-clamp recordings contaminated by noise. The theory and experiments have shown that the method performed effectively under the lower signal-to-noise ratio (SNR 〈 5.0) and had fast model parameter convergence, high restoration precision and strong denoising performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国生物医学工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 主编:刘德培
  • 地址:北京东单三条9号
  • 邮编:100730
  • 邮箱:cjbmecjbme@163.com
  • 电话:010-65248786
  • 国际标准刊号:ISSN:0258-8021
  • 国内统一刊号:ISSN:11-2057/R
  • 邮发代号:82-73
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:8917