本文讨论Fuzzy关系的αR分解问题,即对给定的Fuzzy关系R∈F(X×Y),讨论是否存在两个Fuzzy集A∈F(X)和B∈F(Y)使R=AαRB.其中,A(x)αRB(y)={MR,A(x)≤B(y, B(y),否则,MR)为R的最大元。本文给出Fuzzy关系可αR分解的两个充要条件,对可αR分解的Fuzzy关系,给出了所有使R=ARKB成立的A与B的解集。
This paper deals with an αRdecomposition of a fuzzy relation, that is, for a given fuzzy relations R ∈ F (X ×Y) , determine the existence of two fuzzy sets A ∈ F(X) and B ∈ F(Y) with R= AαR B , whereA(x)αRB(y) = {MR,A(x)≤B(y, B(y),otherwise,MR MR is the greatest element of R. It gives two necessary and sufficient conditions that a fuzzy relation is αR decomposable, and describes the set of all A and B which satisfy R = AαR B .