介绍一个积和不等式猜想,对任意的正整数n和a∈[0,1],有∑k=0^n-1[(n-k)^α-1-(n-k+1)^α-1][(k+1)^1-α-k^1-α]≤(n+1)^1-α-n^1-α.证明对于n≤6和任意α∈[0,1],上述不等式成立.另外,证明与猜想相近的结论.对任意的正整数n和α∈[0,1],有∑k=0^n-1[(n-k)^α-1-(n-k+1)^α-1][(k+1)^1-α-k^1-α]≤(n+1)^1-α-n^1-α+α(2-2^α-1)/n^α+1/n+1成立。For n≤6 and α∈[0,1] ,the inequality is proved. Moreover, a conclusion analogous to the conjecture is proved, which is, for any positive integer n and real number α∈[0,1] , we have ∑k=0^n-1[(n-k)^α-1-(n-k+1)^α-1][(k+1)^1-α-k^1-α]≤(n+1)^1-α-n^1-α.
A conjecture about a sum inequality is introduced . It reads, for any positive integer n and real number a∈[0,1],∑k=0^n-1[(n-k)^α-1-(n-k+1)^α-1][(k+1)^1-α-k^1-α]≤(n+1)^1-α-n^1-α.