利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池,器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响.实验发现:聚合物薄膜经过120°C退火10min处理后,开路电压(Voc)达到0.64V,短路电流密度(Jsc)为10.25mA·cm-2,填充因子(FF)38.1%,光电转换效率(PCE)达到2.00%.为了讨论其内在机制,对不同退火条件下聚合物薄膜进行了各种表征.从紫外-可见吸收光谱中发现,退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽,特别是在560和610nm处的吸收强度明显增大;X射线衍射(XRD)结果表明,120°C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍,有利于光生载流子的输运;原子力显微镜(AFM)研究结果表明,退火显著增大了P3HT与PCBM的相分离程度,提高了激子解离的几率;傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.
Several polymer solar cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/Al (indium tin oxide/ poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester/aluminum cathode) were fabricated by spin coating. The influence of annealing temperature on the performance of the polymer solar cells was studied using absorption spectra, photoluminescence spectra, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM). These devices were treated at 120 °C for 10 min in an ambient atmosphere and the best power conversion efficiency (PCE) of 2.00% was obtained at an open circuit voltage (Voc) of 0.64 V, a short circuit current density (Jsc) of 10.25 mA·cm-2, and a fill factor (FF) of 38.1%. The intensities of the absorption peaks at 560 and 610 nm increased because of the increased absorption π→π* transition of P3HT after annealing treatment. XRD spectra showed that the intensity of the diffraction peaks at (100) for P3HT increased 1.8 times by comparison with that of the cells that did not undergo annealing treatment. The P3HT:PCBM phase separation increased markedly after annealing treatment, which is valuable for exciton dissociation. FTIR results also showed that the polymer materials did not deteriorate during the annealing treatment process.