目的药物重定位是指发掘已有药物新的治疗作用,然而具有潜在治疗作用的药物-疾病往往隐藏在数以百万计的关系对中.该研究基于医疗大数据分析,预测具有潜在治疗关系的药物-疾病关系对.方法将社交网络中推荐系统模型应用于药物重定位研究,并假设具有相似化学结构的药物可能具有相似的适应症.从开源数据库收集已知药物-疾病的治疗关系、副作用关系以及药物和疾病特征描述符,计算得到药物-药物的相似度和疾病-疾病相似度,再构建推荐模型将上述信息融合,并预测具有潜在治疗关系的药物-疾病,最终得到预测关系对的排序列表.结果列表排名前500的关系对中,有12.8%得到临床实验支持或综述报道,20%得到模式生物实验或细胞实验支持.结论相比于已有分类模型和随机抽样结果,本模型可明显提高具有潜在治疗作用药物-疾病的富集程度.