在这份报纸,用部分 Fourier 法律,我们在球形的坐标系统与时间部分的衍生物获得部分热传导方程。可变分离的方法被用来解决 timefractional 热传导方程。顺序的 Caputo 部分衍生物 0 < 1 被使用。解决方案以 Mittag-Leffler 函数被介绍。数字结果为部分衍生物的各种各样的价值图形地被说明。
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.