位置:成果数据库 > 期刊 > 期刊详情页
消除WSN目标功率影响的信号强度差LSSVR定位法
  • ISSN号:1006-7043
  • 期刊名称:哈尔滨工程大学学报
  • 时间:0
  • 页码:1414-1419
  • 语言:中文
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学机械与汽车工程学院,广东广州510640, [2]江西理工大学,江西赣州341000
  • 相关基金:国家自然科学基金资助项目(50764005);教育部新世纪优秀人才支持计划项目(NCET-08-0211).
  • 相关项目:无线传感器网络及其在钨矿环境实时监测中的应用研究
中文摘要:

针对目标发射功率变化下的无线传感器网络(WSN)目标定位问题,分析了无线信道衰减特性,探讨目标功率无关的信号强度差特征提取方法,结合WSN信息交换与处理过程,提出能消除WSN目标功率变化影响的信号强度差LSSVR建模定位方法(TL—LMSD),该方法利用不同探测节点平均信号强度差构造特征向量,通过LSSVR回归建模获得表征特征向量与目标坐标映射关系的LSSVR模型,将各节点目标信号强度测量值的差值所构造特征向量输入LSSVR模型可实现目标定位.基于CC2430无线传感网络实验平台证明TL-LMSD方法目标定位均方根误差RMSE比MLE方法可减小29%~37%;TL—LMSD方法在LSSVR建模、无需重新建模2种情况下的目标定位耗时分别约为0.4s、0.04s.这表明TL-LMSD方法能显著减小信号强度值变化对目标定位结果的影响,提高目标定位准确度,并具有较好的实时性能.

英文摘要:

To better locate targets when the target's transmitting power changes, characteristics of wireless channel attenuation were analyzed. Extraction of features of signal strength differences unrelated with the target's transmitting power was also examined. A novel target localization method was proposed for wireless sensor networks (WSN) combining information exchange and processing, and based on least squares support vector regression (LSSVR) modeling of signal strength differences. With this method, mean received signal strength differences between different sensors were used to compose the initial feature vector. Then LSSVR models were obtained by LSSVR modeling; they represented mappings of relationships between a feature vector and a target's coordinates. Moreover, targets were located by inputting the feature vector composed of the measured signal strength differences among sensors into LSSVR models. The target localization experiment was performed using a WSN experimental platform using Texas Instruments CC2430 chipsets. It was proven that the root mean square error of the target localization-LSSVR Modeling Received Signal Strength Difference (TL-LMRSSD) method's maximum likelihood estimation (MLE) error reduced from 29% to 37%. Furthermore, the processing time for the TL-LMSD method was about 0.4s when LSSVR modeling was needed and about 0.04s when LSSVR modeling was not needed. This showed that the TL- LMSD method improved target localization accuracy by significantly reducing the influence of signal strength variations on target localization results. In addition, it showed good real-time performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823