利用锥拉伸与压缩不动点定理研究了带有p-Laplacian算子的非线性边值问题φp(u′)′+a(t)f(u)=0, 0<t<1,αφp(u(0))-βφp(u′(0))=0, γφp(u(1))+δφp(u′(1))=0无穷多个正解的存在性, 其中φp(s)为p-Laplacian算子, 即φp(s)=|s|^p-2s,p>1,(φp)-1=φq,(1)/(p)+(1)/(q)=1,α>0,β≥0,γ>0,δ≥0.这里a(t)在(0,(1)/(2))有无穷多个奇异点.
The existence of infinitely many positive solutions for the following nonlinear singular boundary value systems with p- Laplacian is studied,φp(u′)′+a(t)f(u)=0, 0〈t〈1,αφp(u(0))-βφp(u′(0))=0, γφp(u(1))+δφp(u′(1))=0,where φp(s)=|s|^p-2s,p〉1,(φp)-1=φq,(1)/(p)+(1)/(q)=1,α〉0,β≥0,γ〉0,δ≥0.By using the fixed-point theorem of cone expansion and compression of norm type, the existence of positive solutions for nonlinear singular boundary value system with p-Laplacian are obtained.