设p是奇素数,a和b是适合a〉b,gcd(a,b)=1的正整数.设f(a,b,p)=(ap-bp)/(a-b).运用初等数论方法证明了当loga≤max(7logp,(2p-1-1)logp)时,f(a,b,p)不是奇完全数.
Let p be an odd prime,a and b be coprime positive integers with ab,gcd(a,b)=1.more over let f(a,b,p)=(ap-bp)/(a-b).Using some elementary number theory methods,it is proved that if log a≤max(7log p,(2p-1-1)log p),f(a,b,p) is not an odd perfect number.