The stability of cemented backfill mass is important to keep miners and equipment safe in underground backfill miming.The stress-strain behavior, resistivity and thermal infrared(TIR) characteristics of backfill mass under uniaxial compression were investigated. The monitoring system consisted of a TIR observation system, a stress-strain monitoring system and a resistivity measurement system. Precursory information for impending failure of cemented backfill mass was collected, including TIR, strain and resistivity precursors. The sensitivity and difference of different monitoring information to the same failure event were compared.The results show that the time-space evolution process of the resistivity and TIR is basically the same as the whole process from compression deformation to failure of backfill mass, and the time variation of resistivity and TIR is obviously characterized by stage.The resistivity precursor turns out earlier than the TIR and the strain. The resistivity relation with loading compression is anti-symmetry, decreasing as the compression stress increases before the peak strength of backfill mass. However, when the backfill mass enters into the phase of failure, the resistivity starts to increase as the stress increases. The change of the resistivity growth direction can be regarded as the resistivity-caution-point for the failure of backfill mass under uniaxial compression. It is also indicated that the TIR information mainly represents the surface temperature evolution in the process of compression before the backfill enters into the plastic-yield state. It can be a valuable tool to obtain the precursors for failure of cemented backfill mass for backfill mines.
The stability of cemented backfill mass is important to keep miners and equipment safe in underground backfill miming. The stress-strain behavior, resistivity and thermal infrared (TIR) characteristics of backfill mass under uniaxial compression were investigated. The monitoring system consisted of a TIR observation system, a stress-strain monitoring system and a resistivity measurement system. Precursory information for impending failure of cemented backfill mass was collected, including TIR, strain and resistivity precursors. The sensitivity and difference of different monitoring information to the same failure event were compared. The results show that the time-space evolution process of the resistivity and TIR is basically the same as the whole process from compression deformation to failure of backfill mass, and the time variation of resistivity and TIR is obviously characterized by stage. The resistivity precursor turns out earlier than the TIR and the strain. The resistivity relation with loading compression is anti-symmetry, decreasing as the compression stress increases before the peak strength of backfill mass. However, when the backfill mass enters into the phase of failure, the resistivity starts to increase as the stress increases. The change of the resistivity growth direction can be regarded as the resistivity-caution-point for the failure of backfill mass under uniaxial compression. It is also indicated that the TIR information mainly represents the surface temperature evolution in the process of compression before the backfill enters into the plastic-yield state. It can be a valuable tool to obtain the precursors for failure of cemented backfill mass for backfill mines.