位置:成果数据库 > 期刊 > 期刊详情页
基于上下文相关的未知实体词识别方法
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]电子科技大学大数据研究中心,成都611731, [2]电子科技大学互联网科学中心,成都611731
  • 相关基金:国家自然科学基金(61250110543)i中央高校基本科研业务费(ZYGX2013J079,ZYGX20142012,ZYGX2011J067)四川省科技项目(2012RZ0002,2013TD0006)
中文摘要:

现有的未知实体词识别方法主要针对人名、地名、机构名等具有特定结构的实体词进行识别,而随着电子商务和社交网络的快速发展,出现了大量结构不确定的专有领域未知实体词。针对该问题,提出两种基于上下文相关的未知词识别算法,通过计算词(字)和词(字)之间的上下文相关性,得到其潜在组合的支持度,并通过过滤模块过滤掉错误的组合,实现具有非确定型结构的未知实体词识别。实验表明,该算法具有较高的准确率,并且可以通过调整参数适应不同的应用场景。

英文摘要:

Existing unknown words recognition methods mainly focus on unknown words with some specific structure, such as names, places and organizations. However, with the booming of e-commerce and social networking, more and more unknown entity words with uncertain structures appear in specific areas. In order to handle this problem, this paper presents two algorithms of unknown words recognition based on context-sensitive method. We first calculate correlations between any two words in sequence to get support of any potential combination, then filter out wrong combinations by filtering module, and achieve the recognition aiming at the non-deterministic structure of unknown words. Experiment results indicate that two algorithms can achieve a high accuracy. Besides, they can adapt to different application scenarios by adjusting the parameters.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314