建立有效的大坝变形监测模型可以反映大坝运行情况.相关向量机(RVM)具有良好的泛化能力,且适于解决非线性问题,尤其是高维数情况.在RVM理论的基础上,建立大坝变形监测模型,并以此研究其优化改进模型.改进思路如下:利用马尔科夫链适于解决监测数据波动大的优势处理模型残差;同时如何选择核参数会严重影响RVM模型的精度,采用一种改进的粒子群算法寻优核参数.通过实例比较多种优化模型发现,基于RVM理论建立模型的优化方法可大大提高预测的泛化能力及精度.
Establishing an effective dam deformation monitoring model can reflect the operation of the dam. The relevance vector machine (RVM) has good generalization ability, and can solve high-dimensional non- linear problem effectively. This paper builds a dam deformation monitoring model based on RVM theory, and puts forward optimization models. Markov chain model is suitable for large fluctuations, so we deal with model residual using Markov chain, and how to choose kernel parameter affecting RVM model great- ly. In this paper, the choice of kernel parameter is based on an improved optimization of algorithm of PSO. Comparing with different optimization models through case stady, we could find that the optimization mod- els can greatly improve the generalization ability and prediction accuracy.