一个混合格子点为天气研究的统计插值整体变换 Kalman 过滤器(GSI-ETKF ) 数据吸收系统并且预报(WRF ) 模型被开发并且与模仿的下投式探空仪观察适用于台风轨道预报。这个混合系统在 2011 在 Muifa 的情况中与标准 GSI 系统相比关于热带气旋磁道预报显示出显著地改进的结果。进一步的分析表明流动依赖者整体协变性比标准 GSI 系统是到 GSI-ETKF 系统的更好的表演的主要贡献者;GSI-ETKF 系统被发现潜在地能系统地调整台风旋涡的位置并且更好更新环境领域。
A hybrid grid-point statistical interpola- tion-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Fore- casting (WRF) model was developed and applied to ty- phoon track forecast with simulated dropsonde observa- tions. This hybrid system showed significantly improved results with respect to tropical cyclone track forecast compared to the standard GSI system in the case of Muifa in 2011. Further analyses revealed that the flow-depen- dent ensemble covariance was the major contributor to the better performance of the GSI-ETKF system than the standard GSI system; the GSI-ETKF system was found to be potentially able to adjust the position of the typhoon vortex systematically and better update the environmental field.